NAME:

Spring 2020 Math 1201 Exam 3

Instructions: WRITE YOUR NAME CLEARLY. Do as many problems as you can for a maximal score of 100. SHOW YOUR WORK!

1. Suppose that $f''(\theta) = \sin \theta + \cos \theta$, f(0) = 3, and f'(0) = 4. Find $f(\theta)$. [10 pts]

2. Express the integral $\int_2^5 (3x + \sqrt{1 + x^2}) dx$ as the limit of a Riemann sum of left rectangles L_n . Do not evaluate. [10 pts]

3. Set up as a definite integral

$$\lim_{n \to \infty} \sum_{k=1}^{n} \left(-4\left(2+k\frac{3}{n}\right)^3 + 2\left(2+k\frac{3}{n}\right) + 7\right) \frac{3}{n}.$$

Do not evaluate.

[10 pts]

4. Compute the Riemann integral $\int_{1}^{3} (2x - 5) dx$ by expressing it as a limit of a Riemann sum and evaluating this limit. [No credit for integral 'shortcuts'] [10 pts]

5. Find the derivative of the function
$$F(x) = \int_0^{x^4} \cos^2 \theta \, d\theta$$
 [10 pts]

6. Evaluate the limit $\lim_{n \to \infty} \frac{2}{n} \left(\left(1 + \frac{2}{n} \right)^2 + \left(1 + 2\frac{2}{n} \right)^2 + \left(1 + 3\frac{2}{n} \right)^2 + \dots + \left(1 + n\frac{2}{n} \right)^2 \right).$ You may apply the Fundamental Theorem of Calculus for 'shortcuts'. [10 pts] 7. Find the general indefinite integral of: (a) $\int \frac{2x + \sqrt{x}}{x} dx$

(b) $\int (1 + \tan^2 \alpha) d\alpha$

[5 pts]

[5 pts]

8. Evaluate
$$\int_{-5}^{0} \sqrt{25 - x^2} dx$$
 [10 pts]

9. Evaluate $\int_0^1 (u+2)(u-3)du$

[10 pts]

10.	Evaluate $\int_{-1}^{1} \sin(\pi x^3) dx$	Hint: Use symmetry	[10 pts]
-----	---	--------------------	----------

Extra-Credit

11. Prove the Fundamental Theorem of Calculus. Namely, prove that if $f: (\alpha, \beta)$ $\rightarrow \mathbf{R}$ is continuous and $a \in (\alpha, \beta)$ is any point in the interval where f(x) is defined, then $F(x) = \int_{a}^{x} f(t)dt$ is one of its antiderivatives. In particular, every continuous, real valued function has an antiderivative. [10 pts]

12. Let
$$f(x) = \begin{cases} \frac{\sin 5x}{x} & \text{if } x > 0 \\ -7 & \text{if } x = 0 \end{cases}$$

What is
$$\lim_{h \to 0} \frac{1}{h} \int_0^h f(x) dx$$
? [10 pts]

13. If
$$x\sin(\pi x) = \int_{0}^{x^2} f(t)dt$$
, where f is a continuous function, find $f(4)$ [10 pts]